Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Front Immunol ; 13: 964525, 2022.
Article in English | MEDLINE | ID: covidwho-2319476

ABSTRACT

Background: Results showing that sera from double vaccinated individuals have minimal neutralizing activity against Omicron have been interpreted as indicating the need for a third vaccine dose for protection. However, there is little information about early immune responses to Omicron infection in double vaccinated individuals. Methods: We measured inflammatory mediators, antibodies to the SARS-CoV-2 spike and nucleocapsid proteins, and spike peptide-induced release of interferon gamma in whole blood in 51 double-vaccinated individuals infected with Omicron, in 14 infected with Delta, and in 18 healthy controls. The median time points for the first and second samples were 7 and 14 days after symptom onset, respectively. Findings: Infection with Omicron or Delta led to a rapid and similar increase in antibodies to the receptor-binding domain (RBD) of Omicron protein and spike peptide-induced interferon gamma in whole blood. Both the Omicron- and the Delta-infected patients had a mild and transient increase in inflammatory parameters. Interpretation: The results suggest that two vaccine doses are sufficient to mount a rapid and potent immune response upon infection in healthy individuals of with the Omicron variant. Funding: The study was funded by the Oslo University Hospital, and by grants from The Coalition for Epidemic Preparedness Innovations, Research Council of Norway (no 312780, 324272), South-Eastern Norway Regional Health Authority (no 2019067, 2021071, 10357, 2021047, 33612, 2021087, 2017092), EU Horizon 2020 grant no 848099, a philantropic donation from Vivaldi Invest A/S, and The European Virus Archive Global.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , Humans , Inflammation Mediators , Interferon-gamma , Nucleocapsid Proteins , SARS-CoV-2
3.
Crit Care ; 27(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2284552

ABSTRACT

BACKGROUND: Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS: Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS: Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS: Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cohort Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2/genetics , Hospitalization
5.
J Inflamm Res ; 15: 6629-6644, 2022.
Article in English | MEDLINE | ID: covidwho-2224591

ABSTRACT

Purpose: Reactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery. Patients and Methods: Levels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets. Results: Patients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus. Conclusion: Although beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.

6.
NPJ Vaccines ; 7(1): 174, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2185871

ABSTRACT

Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 serum samples. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.

7.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099853

ABSTRACT

The Omicron variant of SARS-CoV-2 spreads more easily than earlier variants, possibly as a result of a higher viral load in the upper respiratory tract and oral cavity. Hence, we investigated whether the Omicron variant generates a higher viral load than that of the Delta variant in saliva and nasopharynx. Both specimens were collected from 52 Omicron and 17 Delta cases at two time points one week apart and analyzed by qRT-PCR. Viral load was measured as 10 log RNA genome copies per 1000 human cells according to the WHO reference standard. We found that Omicron cases carried a higher viral load and had more sustained viral shedding compared to the Delta cases, especially in the nasopharynx.


Subject(s)
COVID-19 , Saliva , Humans , Nasopharynx/virology , RNA, Viral/genetics , RNA, Viral/analysis , Saliva/virology , SARS-CoV-2/genetics , Viral Load
9.
Can J Infect Dis Med Microbiol ; 2022: 9297974, 2022.
Article in English | MEDLINE | ID: covidwho-2053446

ABSTRACT

Nebulizer therapy is commonly used for patients with obstructive pulmonary disease or acute pulmonary infections with signs of obstruction. It is considered a "potential aerosol-generating procedure," and the risk of disease transmission to health care workers is uncertain. The aim of this pilot study was to assess whether nebulizer therapy in hospitalized COVID-19 patients is associated with increased dispersion of SARS-CoV-2. Air samples collected prior to and during nebulizer therapy were analyzed by RT-PCR and cell culture. Total aerosol particle concentrations were also quantified. Of 13 patients, seven had quantifiable virus in oropharynx samples, and only two had RT-PCR positive air samples. For both these patients, air samples collected during nebulizer therapy had higher SARS-CoV-2 RNA concentrations compared to control air samples. Also, for particle sizes 0.3-5 µm, particle concentrations were significantly higher during nebulizer therapy than in controls. We were unable to cultivate virus from any of the RT-PCR positive air samples, and it is therefore unknown if the detected virus were replication-competent; however, the significant increase in smaller particles, which can remain airborne for extended periods of time, and increased viral RNA concentrations during treatment may indicate that nebulizer therapy is associated with increased risk of SARS-CoV-2 transmission.

10.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046782

ABSTRACT

Background Results showing that sera from double vaccinated individuals have minimal neutralizing activity against Omicron have been interpreted as indicating the need for a third vaccine dose for protection. However, there is little information about early immune responses to Omicron infection in double vaccinated individuals. Methods We measured inflammatory mediators, antibodies to the SARS-CoV-2 spike and nucleocapsid proteins, and spike peptide-induced release of interferon gamma in whole blood in 51 double-vaccinated individuals infected with Omicron, in 14 infected with Delta, and in 18 healthy controls. The median time points for the first and second samples were 7 and 14 days after symptom onset, respectively. Findings Infection with Omicron or Delta led to a rapid and similar increase in antibodies to the receptor-binding domain (RBD) of Omicron protein and spike peptide-induced interferon gamma in whole blood. Both the Omicron- and the Delta-infected patients had a mild and transient increase in inflammatory parameters. Interpretation The results suggest that two vaccine doses are sufficient to mount a rapid and potent immune response upon infection in healthy individuals of with the Omicron variant. Funding The study was funded by the Oslo University Hospital, and by grants from The Coalition for Epidemic Preparedness Innovations, Research Council of Norway (no 312780, 324272), South-Eastern Norway Regional Health Authority (no 2019067, 2021071, 10357, 2021047, 33612, 2021087, 2017092), EU Horizon 2020 grant no 848099, a philantropic donation from Vivaldi Invest A/S, and The European Virus Archive Global.

11.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1961059

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe Covid-19. The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in SARS-CoV-2 infection is limited. We thus investigated the levels of these chemokines in Covid-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with Covid-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and three-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the three-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in Covid-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in Covid-19.

12.
J Infect ; 85(1): 57-63, 2022 07.
Article in English | MEDLINE | ID: covidwho-1851543

ABSTRACT

OBJECTIVES: To determine the incidence and characteristics of superinfections in mechanically ventilated COVID-19 patients, and the impact of dexamethasone as standard therapy. METHODS: This multicentre, observational, retrospective study included patients ≥ 18 years admitted from March 1st 2020 to January 31st 2021 with COVID-19 infection who received mechanical ventilation. Patient characteristics, clinical characteristics, therapy and survival were examined. RESULTS: 155/156 patients (115 men, mean age 62 years, range 26-84 years) were included. 67 patients (43%) had 90 superinfections, pneumonia dominated (78%). Superinfections were associated with receiving dexamethasone (66% vs 32%, p<0.0001), autoimmune disease (18% vs 5.7%, p<0.016) and with longer ICU stays (26 vs 17 days, p<0,001). Invasive fungal infections were reported exclusively in dexamethasone-treated patients [8/67 (12%) vs 0/88 (0%), p<0.0001]. Unadjusted 90-day survival did not differ between patients with or without superinfections (64% vs 73%, p=0.25), but was lower in patients receiving dexamethasone versus not (58% vs 78%, p=0.007). In multiple regression analysis, superinfection was associated with dexamethasone use [OR 3.7 (1.80-7.61), p<0.001], pre-existing autoimmune disease [OR 3.82 (1.13-12.9), p=0.031] and length of ICU stay [OR 1.05 p<0.001]. CONCLUSIONS: In critically ill COVID-19 patients, dexamethasone as standard of care was strongly and independently associated with superinfections.


Subject(s)
Autoimmune Diseases , COVID-19 , Superinfection , Adrenal Cortex Hormones/adverse effects , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/etiology , Dexamethasone/adverse effects , Humans , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Superinfection/etiology
13.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: covidwho-1546628

ABSTRACT

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.ResultsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.ConclusionsThe major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.


Subject(s)
Alleles , COVID-19 , Chromosomes, Human, Pair 3/genetics , Gene Frequency , Genetic Loci , Polymorphism, Genetic , SARS-CoV-2 , Age Factors , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/mortality , Female , Humans , Male , Middle Aged , Patient Acuity , Risk Factors
14.
Crit Care Explor ; 3(10): e0542, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1450449

ABSTRACT

To examine whether interleukin-6 in critical coronavirus disease 2019 is higher in arterial than in central venous blood, as a sign of predominantly local pulmonal rather than systemic interleukin-6 production. DESIGN: Prospective cohort pilot study with repeated weekly measurements of interleukin-6 in arterial and central venous blood. Respiratory function, assessed with Pao2/Fio2 ratio, was measured at the time of blood sampling. SETTING: ICU at a university hospital. SUBJECTS: Nine adult patients with critical coronavirus disease 2019, actively treated and receiving mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: No difference between arterial and central venous interleukin-6 was found. There was a significant negative relationship between interleukin-6 concentration and P/F ratio in both arterial (p = 0.04) and central venous (p = 0.03) blood. CONCLUSIONS: The absence of an arteriovenous interleukin-6 difference implies that interleukin-6 in critical coronavirus disease 2019 is mainly produced outside the lungs as part of a systemic inflammatory response syndrome and act as a driver of local inflammation and damage in the lungs.

15.
J Neurol ; 268(10): 3574-3583, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1141418

ABSTRACT

OBJECTIVE: To test the hypotheses that blood biomarkers for nervous system injury, serum concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. METHODS: Forty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa), NfL and GFAp. Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. RESULTS: In total, 21% (n = 10) of the patients were admitted to an intensive care unit, and the overall mortality rate was 13% (n = 6). Non-survivors had higher serum concentrations of NfL (p < 0.001) upon admission than patients who were discharged alive both in adjusted analyses (p = 2.6 × 10-7) and unadjusted analyses (p = 0.001). The concentrations of NfL in non-survivors increased over repeated measurements; whereas, the concentrations in survivors were stable. The GFAp concentration was also significantly higher in non-survivors than survivors (p = 0.02). CONCLUSION: Increased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19 , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Neurofilament Proteins , Prognosis , SARS-CoV-2
16.
BMJ Open ; 11(3): e043887, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1127585

ABSTRACT

INTRODUCTION: Very little is known about possible clinical sequelae that may persist after resolution of acute COVID-19. A recent longitudinal cohort from Italy including 143 patients followed up after hospitalisation with COVID-19 reported that 87% had at least one ongoing symptom at 60-day follow-up. Early indications suggest that patients with COVID-19 may need even more psychological support than typical intensive care unit patients. The assessment of risk factors for longer term consequences requires a longitudinal study linked to data on pre-existing conditions and care received during the acute phase of illness. The primary aim of this study is to characterise physical and psychosocial sequelae in patients post-COVID-19 hospital discharge. METHODS AND ANALYSIS: This is an international open-access prospective, observational multisite study. This protocol is linked with the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) and the WHO's Clinical Characterisation Protocol, which includes patients with suspected or confirmed COVID-19 during hospitalisation. This protocol will follow-up a subset of patients with confirmed COVID-19 using standardised surveys to measure longer term physical and psychosocial sequelae. The data will be linked with the acute phase data. Statistical analyses will be undertaken to characterise groups most likely to be affected by sequelae of COVID-19. The open-access follow-up survey can be used as a data collection tool by other follow-up studies, to facilitate data harmonisation and to identify subsets of patients for further in-depth follow-up. The outcomes of this study will inform strategies to prevent long-term consequences; inform clinical management, interventional studies, rehabilitation and public health management to reduce overall morbidity; and improve long-term outcomes of COVID-19. ETHICS AND DISSEMINATION: The protocol and survey are open access to enable low-resourced sites to join the study to facilitate global standardised, longitudinal data collection. Ethical approval has been given by sites in Colombia, Ghana, Italy, Norway, Russia, the UK and South Africa. New sites are welcome to join this collaborative study at any time. Sites interested in adopting the protocol as it is or in an adapted version are responsible for ensuring that local sponsorship and ethical approvals in place as appropriate. The tools are available on the ISARIC website (www.isaric.org). PROTOCOL REGISTRATION NUMBER: osf.io/c5rw3/ PROTOCOL VERSION: 3 August 2020 EUROQOL ID: 37035.


Subject(s)
COVID-19/diagnosis , COVID-19/psychology , Colombia , Ghana , Humans , Italy , Longitudinal Studies , Norway , Prospective Studies , Risk Factors , Russia , South Africa , United Kingdom
17.
Sci Rep ; 10(1): 21697, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-1059940

ABSTRACT

In SARS-CoV-2 infection there is an urgent need to identify patients that will progress to severe COVID-19 and may benefit from targeted treatment. In this study we analyzed plasma cytokines in COVID-19 patients and investigated their association with respiratory failure (RF) and treatment in Intensive Care Unit (ICU). Hospitalized patients (n = 34) with confirmed COVID-19 were recruited into a prospective cohort study. Clinical data and blood samples were collected at inclusion and after 2-5 and 7-10 days. RF was defined as PaO2/FiO2 ratio (P/F) < 40 kPa. Plasma cytokines were analyzed by a Human Cytokine 27-plex assay. COVID-19 patients with RF and/or treated in ICU showed overall increased systemic cytokine levels. Plasma IL-6, IL-8, G-CSF, MCP-1, MIP-1α levels were negatively correlated with P/F, whereas combinations of IL-6, IP-10, IL-1ra and MCP-1 showed the best association with RF in ROC analysis (AUC 0.79-0.80, p < 0.05). During hospitalization the decline was most significant for IP-10 (p < 0.001). Elevated levels of pro-inflammatory cytokines were present in patients with severe COVID-19. IL-6 and MCP-1 were inversely correlated with P/F with the largest AUC in ROC analyses and should be further explored as biomarkers to identify patients at risk for severe RF and as targets for improved treatment strategies.


Subject(s)
COVID-19/blood , Chemokine CCL2/blood , Interleukin-6/blood , Respiratory Insufficiency/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/complications , Female , Humans , Male , Middle Aged , Prospective Studies , Respiratory Insufficiency/etiology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL